Heat is a flexible and seamless open-source software for high performance data analytics and machine learning. It provides highly optimized algorithms and data structures for tensor computations using CPUs, GPUs and distributed cluster systems on top of MPI.
Heat is a flexible and seamless open-source software for high performance data
analytics and machine learning. It provides highly optimized algorithms and data
structures for tensor computations using CPUs, GPUs and distributed cluster
systems on top of MPI. The goal of Heat is to fill the gap between data
analytics and machine learning libraries with a strong focus on single-node
performance, and traditional high-performance computing (HPC). Heat's generic
Python-first programming interface integrates seamlessly with the existing data
science ecosystem and makes it as effortless as using numpy to write scalable
scientific and data science applications.
Heat allows you to tackle your actual Big Data challenges that go beyond the
computational and memory needs of your laptop and desktop.
If you find Heat helpful for your research, please mention it in your publications. You can cite:
@inproceedings{heat2020,
title={{HeAT -- a Distributed and GPU-accelerated Tensor Framework for Data Analytics}},
author={
Markus Götz and
Charlotte Debus and
Daniel Coquelin and
Kai Krajsek and
Claudia Comito and
Philipp Knechtges and
Björn Hagemeier and
Michael Tarnawa and
Simon Hanselmann and
Martin Siggel and
Achim Basermann and
Achim Streit
},
booktitle={2020 IEEE International Conference on Big Data (Big Data)},
year={2020},
pages={276-287},
month={December},
publisher={IEEE},
doi={10.1109/BigData50022.2020.9378050}
}
This work is supported by the Helmholtz Association Initiative and Networking Fund
under project number ZT-I-0003 and the Helmholtz AI platform grant.
Democratizing AI
Helmholtz Platform for Research Software Engineering - Preparatory Study